Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Bone ; 178: 116947, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37898381

RESUMO

BACKGROUND: Hypophosphatasia (HPP) is an inherited multisystem disorder predominantly affecting the mineralization of bones and teeth. HPP is caused by pathogenic variants in ALPL, which encodes tissue non-specific alkaline phosphatase (TNSALP). Variants of uncertain significance (VUS) cause diagnostic delay and uncertainty amongst patients and health care providers. RESULTS: The ALPL gene variant database (https://alplmutationdatabase.jku.at/) is an open-access archive for interpretation of the clinical significance of variants reported in ALPL. The database contains coding and non-coding variants, including single nucleotide variants, insertions/deletions and structural variants affecting coding or non-coding sequences of ALPL. Each variant in the database is displayed with details explaining the corresponding pathogenicity, and all reported genotypes and phenotypes, including references. In 2021, the ALPL gene variant classification project was established to reclassify VUS and continuously assess and update genetic, phenotypic, and functional variant information in the database. For this purpose, the database provides a unique submission system for clinicians, geneticists, genetic counselors, and researchers to submit VUS within ALPL for classification. An international, multidisciplinary consortium of HPP experts has been established to reclassify the submitted VUS using a multi-step process adhering to the stringent ACMG/AMP variant classification guidelines. These steps include a clinical phenotype assessment, deep literature research including artificial intelligence technology, molecular genetic assessment, and in-vitro functional testing of variants in a co-transfection model to measure ALP residual activity. CONCLUSION: This classification project and the ALPL gene variant database will serve the global medical community, widen the genotypic and phenotypic HPP spectrum by reporting and characterizing new ALPL variants based on ACMG/AMP criteria and thus facilitate improved genetic counseling and medical decision-making for affected patients and families. The project may also serve as a gold standard framework for multidisciplinary collaboration for variant interpretation in other rare diseases.


Assuntos
Fosfatase Alcalina , Hipofosfatasia , Humanos , Fosfatase Alcalina/genética , Fosfatase Alcalina/química , Mutação/genética , Inteligência Artificial , Diagnóstico Tardio , Hipofosfatasia/genética , Hipofosfatasia/patologia
2.
J Clin Pediatr Dent ; 47(4): 111-115, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37408354

RESUMO

Hypophosphatasia (HPP) is a rare genetic disorder mainly characterized by skeletal dysplasia that results from a deficiency in tissue-nonspecific alkaline phosphatase (TNSALP), which is encoded by the alkaline phosphatase (ALPL) gene. Odontohypophosphatasia (odonto-HPP) is a mild form of HPP characterized by oral symptoms, such as premature loss of primary teeth. This study was to describe a 4-year-old boy with premature loss of primary teeth who was diagnosed with odonto-HPP. X-ray radiography and laboratory examinations were performed for the diagnosis. Genetic etiology was revealed by whole-exome sequencing. A novel combination of two variants in the ALPL gene was identified in this case; this combination resulted in the odonto-HPP phenotype. c.346G>A (p.Ala116Thr) was inherited from the proband's father, whereas c.1563C>G (p.Ser521Arg) was inherited from the proband's mother. The proband's 8-year-old sister was a heterozygous carrier of c.346G>A (p.Ala116Thr) in the ALPL gene. Thus far, the proband's sister has been asymptomatic. Our findings indicate that c.346G>A is a pathogenic genetic alteration; c.1563C>G might cause a predisposition to the dental phenotype in combination with c.346G>A. It is important for pediatric dentists to consider a diagnosis of odonto-HPP in children with premature loss of primary teeth.


Assuntos
Hipofosfatasia , Desmineralização do Dente , Humanos , Hipofosfatasia/genética , Hipofosfatasia/patologia , Fosfatase Alcalina/genética , Desmineralização do Dente/genética , Mutação
3.
Nat Commun ; 14(1): 4048, 2023 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422472

RESUMO

Hypophosphatasia (HPP) is a metabolic bone disease that manifests as developmental abnormalities in bone and dental tissues. HPP patients exhibit hypo-mineralization and osteopenia due to the deficiency or malfunction of tissue non-specific alkaline phosphatase (TNAP), which catalyzes the hydrolysis of phosphate-containing molecules outside the cells, promoting the deposition of hydroxyapatite in the extracellular matrix. Despite the identification of hundreds of pathogenic TNAP mutations, the detailed molecular pathology of HPP remains unclear. Here, to address this issue, we determine the crystal structures of human TNAP at near-atomic resolution and map the major pathogenic mutations onto the structure. Our study reveals an unexpected octameric architecture for TNAP, which is generated by the tetramerization of dimeric TNAPs, potentially stabilizing the TNAPs in the extracellular environments. Moreover, we use cryo-electron microscopy to demonstrate that the TNAP agonist antibody (JTALP001) forms a stable complex with TNAP by binding to the octameric interface. The administration of JTALP001 enhances osteoblast mineralization and promoted recombinant TNAP-rescued mineralization in TNAP knockout osteoblasts. Our findings elucidate the structural pathology of HPP and highlight the therapeutic potential of the TNAP agonist antibody for osteoblast-associated bone disorders.


Assuntos
Fosfatase Alcalina , Hipofosfatasia , Humanos , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Hipofosfatasia/genética , Hipofosfatasia/metabolismo , Hipofosfatasia/patologia , Microscopia Crioeletrônica , Osso e Ossos/metabolismo , Osteoblastos/metabolismo
4.
Front Endocrinol (Lausanne) ; 14: 1320516, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38234425

RESUMO

Introduction: Hypophosphatasia (HPP) is an inborn metabolic error caused by mutations in the ALPL gene encoding tissue non-specific alkaline phosphatase (TNSALP) and leading to decreased alkaline phosphatase (ALP) activity. Although the main characteristic of this disease is bone involvement, it presents a great genetic and clinical variability, which makes it a systemic disease. Methods: Patients were recruited based on biochemical assessments. Diagnosis was made by measuring serum ALP and pyridoxal 5-phosphate levels and finally by Sanger sequencing of the ALPL gene from peripheral blood mononuclear cells. Characterization of the new variants was performed by transfection of the variants into HEK293T cells, where ALP activity and cellular localization were measured by flow cytometry. The dominant negative effect was analyzed by co-transfection of each variant with the wild-type gene, measuring ALP activity and analyzing cellular localization by flow cytometry. Results: Two previously undescribed variants were found in the ALPL gene: leucine 6 to serine missense mutation (c.17T>C, L6S) affecting the signal peptide and threonine 167 deletion (c.498_500delCAC, T167del) affecting the vicinity of the active site. These mutations lead mainly to non-pathognomonic symptoms of HPP. Structural prediction and modeling tools indicated the affected residues as critical residues with important roles in protein structure and function. In vitro results demonstrated low TNSALP activity and a dominant negative effect in both mutations. The results of the characterization of these variants suggest that the pleiotropic role of TNSALP could be involved in the systemic effects observed in these patients highlighting digestive and autoimmune disorders associated with TNSALP dysfunction. Conclusions: The two new mutations have been classified as pathogenic. At the clinical level, this study suggests that both mutations not only lead to pathognomonic symptoms of the disease, but may also play a role at the systemic level.


Assuntos
Hipofosfatasia , Humanos , Hipofosfatasia/genética , Hipofosfatasia/patologia , Fosfatase Alcalina , Células HEK293 , Leucócitos Mononucleares/metabolismo , Mutação
5.
J Bone Miner Res ; 37(10): 2005-2017, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36053890

RESUMO

Hypophosphatasia (HPP) is the inherited error-of-metabolism caused by mutations in ALPL, reducing the function of tissue-nonspecific alkaline phosphatase (TNAP/TNALP/TNSALP). HPP is characterized by defective skeletal and dental mineralization and is categorized into several clinical subtypes based on age of onset and severity of manifestations, though premature tooth loss from acellular cementum defects is common across most HPP subtypes. Genotype-phenotype associations and mechanisms underlying musculoskeletal, dental, and other defects remain poorly characterized. Murine models that have provided significant insights into HPP pathophysiology also carry limitations including monophyodont dentition, lack of osteonal remodeling of cortical bone, and differing patterns of skeletal growth. To address this, we generated the first gene-edited large-animal model of HPP in sheep via CRISPR/Cas9-mediated knock-in of a missense mutation (c.1077C>G; p.I359M) associated with skeletal and dental manifestations in humans. We hypothesized that this HPP sheep model would recapitulate the human dentoalveolar manifestations of HPP. Compared to wild-type (WT), compound heterozygous (cHet) sheep with one null allele and the other with the targeted mutant allele exhibited the most severe alveolar bone, acellular cementum, and dentin hypomineralization defects. Sheep homozygous for the mutant allele (Hom) showed alveolar bone and hypomineralization effects and trends in dentin and cementum, whereas sheep heterozygous (Het) for the mutation did not exhibit significant effects. Important insights gained include existence of early alveolar bone defects that may contribute to tooth loss in HPP, observation of severe mantle dentin hypomineralization in an HPP animal model, association of cementum hypoplasia with genotype, and correlation of dentoalveolar defects with alkaline phosphatase (ALP) levels. The sheep model of HPP faithfully recapitulated dentoalveolar defects reported in individuals with HPP, providing a new translational model for studies into etiopathology and novel therapies of this disorder, as well as proof-of-principle that genetically engineered large sheep models can replicate human dentoalveolar disorders. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Hipofosfatasia , Perda de Dente , Animais , Humanos , Fosfatase Alcalina/genética , Modelos Animais de Doenças , Hipofosfatasia/genética , Hipofosfatasia/patologia , Mutação/genética , Ovinos
6.
Stem Cell Res ; 64: 102891, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35964540

RESUMO

A new induced pluripotent stem cell (iPSC) line namely UOMi008-A was generated from a patient having a childhood onset of Hypophosphatasia (HPP). This patient has compound heterozygous mutations c.571G > A (p.Glu191Lys) and c.1001G > A (p.Gly334Asp) in the ALPL gene respectively. This iPSC line will be used for in vitro disease modeling, which will aid in delineating the underlying molecular mechanism involved in disease pathogenesis and provide plausible new therapeutic directions.


Assuntos
Hipofosfatasia , Células-Tronco Pluripotentes Induzidas , Humanos , Criança , Hipofosfatasia/genética , Hipofosfatasia/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Fosfatase Alcalina/genética , Mutação/genética , Linhagem Celular
7.
PLoS Comput Biol ; 18(3): e1010009, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35320273

RESUMO

Hypophosphatasia (HPP) is a rare inherited disorder characterized by defective bone mineralization and is highly variable in its clinical phenotype. The disease occurs due to various loss-of-function mutations in ALPL, the gene encoding tissue-nonspecific alkaline phosphatase (TNSALP). In this work, a data-driven and biophysics-based approach is proposed for the large-scale analysis of ALPL mutations-from nonpathogenic to severe HPPs. By using a pipeline of synergistic approaches including sequence-structure analysis, network modeling, elastic network models and atomistic simulations, we characterized allosteric signatures and effects of the ALPL mutations on protein dynamics and function. Statistical analysis of molecular features computed for the ALPL mutations showed a significant difference between the control, mild and severe HPP phenotypes. Molecular dynamics simulations coupled with protein structure network analysis were employed to analyze the effect of single-residue variation on conformational dynamics of TNSALP dimers, and the developed machine learning model suggested that the topological network parameters could serve as a robust indicator of severe mutations. The results indicated that the severity of disease-associated mutations is often linked with mutation-induced modulation of allosteric communications in the protein. This study suggested that ALPL mutations associated with mild and more severe HPPs can exert markedly distinct effects on the protein stability and long-range network communications. By linking the disease phenotypes with dynamic and allosteric molecular signatures, the proposed integrative computational approach enabled to characterize and quantify the allosteric effects of ALPL mutations and role of allostery in the pathogenesis of HPPs.


Assuntos
Fosfatase Alcalina , Hipofosfatasia , Fosfatase Alcalina/genética , Calcificação Fisiológica , Humanos , Hipofosfatasia/genética , Hipofosfatasia/patologia , Mutação , Fenótipo
8.
Ann Clin Lab Sci ; 51(3): 422-425, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34162574

RESUMO

Mutations of phosphatidylinositol glycan biosynthesis class T (PIGT), which encodes a subunit of the glycosylphosphatidylinositol (GPI) transamidase complex, can lead to multiple anomalies, including seizures, intellectual disabilities, facial dysmorphism, and various congenital malformations. We performed whole-exome sequencing in a patient with seizures, intellectual disabilities, truncal ataxia, facial dysmorphism, and persistent hypophosphatasia without rickets or bone mineralization defects, and identified two heterozygous mutations in PIGT, c.250G>T (p.Glu84*) and c.1582G>A (p.Val528Met). GPI-linked protein analyses found no abnormalities. Although the patient's hypophosphatasia persists, no skeletal, urological, or dental abnormalities were found. The seizures disappeared after administering antiepileptic drugs. PIGT mutations should be considered in patients with multiple congenital symptoms and persistent hypophosphatasia.


Assuntos
Anormalidades Múltiplas/patologia , Aciltransferases/genética , Anormalidades Congênitas/patologia , Hipofosfatasia/patologia , Hipotonia Muscular/patologia , Mutação , Convulsões/patologia , Anormalidades Múltiplas/genética , Pré-Escolar , Anormalidades Congênitas/genética , Feminino , Heterozigoto , Humanos , Hipofosfatasia/genética , Hipotonia Muscular/genética , República da Coreia , Convulsões/genética , Síndrome
9.
Mol Genet Metab ; 133(1): 113-121, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33814268

RESUMO

BACKGROUND: Hypophosphatasia (HPP), a rare metabolic disease, can be inherited in an autosomal recessive (biallelic) or an autosomal dominant (monoallelic) manner. Most of the severe, early-onset, frequently lethal HPP in infants is acquired through recessive inheritance; less severe, later-onset, typically nonlethal HPP phenotypes are acquired through either dominant or recessive inheritance. HPP's variable clinical presentation arises from >400 identified ALPL pathogenic variants with likely variable penetrance, especially with autosomal dominant inheritance. This post hoc analysis investigated the relationship between ALPL variant state (biallelic and monoallelic) and clinical outcomes with asfotase alfa in HPP. METHODS: Data were pooled from two phase 2, randomized, open-label studies in adolescents and adults with HPP; one study evaluated the efficacy and safety of different doses of asfotase alfa (n = 25), and the other assessed the pharmacodynamics and safety of asfotase alfa (n = 19). Patients were grouped by ALPL variant state (biallelic or monoallelic). Available data from both studies included ALPL pathogenic variant state, Baseline characteristics, HPP-specific medical history, and Baseline TNSALP substrate levels (inorganic pyrophosphate [PPi] and pyridoxal 5'-phosphate [PLP]) concentrations). Clinical outcomes over 5 years of treatment were available from only the efficacy and safety study. RESULTS: In total, 44 patients with known variant status were included in the pooled analysis (biallelic, n = 30; monoallelic, n = 14). The most common pathogenic variant was c.571G > A (p.Glu191Lys) in biallelic patients (allele frequency: 19/60) and c.1133A > T (p.Asp378Val) in monoallelic patients (allele frequency: 7/28). Median (min, max) Baseline PPi concentrations were significantly higher in patients with a biallelic vs monoallelic variant state (5.3 [2.2, 12.1] vs 4.3 [3.5, 7.4] µM; P = 0.0113), as were Baseline PLP concentrations (221.4 [62.4, 1590.0] vs 75.1 [28.8, 577.0] ng/mL; P= 0.0022). HPP-specific medical history was generally similar between biallelic and monoallelic patients in terms of incidence and type of manifestations; notable exceptions included fractures, which were more common among monoallelic patients, and delayed walking and bone deformities such as abnormally shaped chest and head and bowing of arms or legs, which were more common among biallelic patients. Data from the efficacy and safety study (n = 19) showed that median PPi and PLP concentrations were normalized over 5 years of treatment in patients with both variant states. Median % predicted distance walked on the 6-Minute Walk Test remained within the normal range for monoallelic patients over 4 years of treatment, and improved from below normal (<84%) to normal in biallelic patients. CONCLUSIONS: Although patients with biallelic variants had significantly higher Baseline PPi and PLP levels than monoallelic variants, both groups generally showed similar pretreatment Baseline clinical characteristics. Treatment with asfotase alfa for up to 5 years normalized TNSALP substrate concentrations and improved functional outcomes, with no clear differences between biallelic and monoallelic variant states. This study suggests that patients with HPP have significant disease burden, regardless of ALPL variant state.


Assuntos
Fosfatase Alcalina/administração & dosagem , Fosfatase Alcalina/genética , Hipofosfatasia/tratamento farmacológico , Imunoglobulina G/administração & dosagem , Proteínas Recombinantes de Fusão/administração & dosagem , Adolescente , Adulto , Ensaios Clínicos Fase II como Assunto , Feminino , Genes Recessivos/genética , Humanos , Hipofosfatasia/genética , Hipofosfatasia/patologia , Masculino , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento , Adulto Jovem
10.
Int J Mol Sci ; 22(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919113

RESUMO

Hypophosphatasia (HPP) is a rare genetic disease characterized by a decrease in the activity of tissue non-specific alkaline phosphatase (TNSALP). TNSALP is encoded by the ALPL gene, which is abundantly expressed in the skeleton, liver, kidney, and developing teeth. HPP exhibits high clinical variability largely due to the high allelic heterogeneity of the ALPL gene. HPP is characterized by multisystemic complications, although the most common clinical manifestations are those that occur in the skeleton, muscles, and teeth. These complications are mainly due to the accumulation of inorganic pyrophosphate (PPi) and pyridoxal-5'-phosphate (PLP). It has been observed that the prevalence of mild forms of the disease is more than 40 times the prevalence of severe forms. Patients with HPP present at least one mutation in the ALPL gene. However, it is known that there are other causes that lead to decreased alkaline phosphatase (ALP) levels without mutations in the ALPL gene. Although the phenotype can be correlated with the genotype in HPP, the prediction of the phenotype from the genotype cannot be made with complete certainty. The availability of a specific enzyme replacement therapy for HPP undoubtedly represents an advance in therapeutic strategy, especially in severe forms of the disease in pediatric patients.


Assuntos
Fosfatase Alcalina/genética , Calcinose/complicações , Hipofosfatasia/patologia , Mutação , Terapia de Reposição de Enzimas/métodos , Humanos , Hipofosfatasia/enzimologia , Hipofosfatasia/etiologia , Hipofosfatasia/terapia
11.
Mol Genet Metab ; 132(3): 198-203, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33549410

RESUMO

Hypophosphatasia (HPP) is a rare inherited disease affecting bone and dental mineralization due to loss-of-function mutations in the ALPL gene encoding the tissue nonspecific alkaline phosphatase (TNSALP). Prenatal benign HPP (PB HPP) is a rare form of HPP characterized by in utero skeletal manifestations that progressively improve during pregnancy but often still leave symptoms after birth. Because the prenatal context limits the diagnostic tools, the main difficulty for clinicians is to distinguish PB HPP from perinatal lethal HPP, the most severe form of HPP. We previously attempted to improve genotype phenotype correlation with the help of a new classification of variants based on functional testing. Among 46 perinatal cases detected in utero or in the neonatal period for whose ALPL variants could be classified, imaging alone was thought to clearly diagnose severe lethal HPP in 35 cases, while in 11 cases, imaging abnormalities could not distinguish between perinatal lethal and BP HPP. We show here that our classification of ALPL variants may improve the ability to distinguish between perinatal lethal and PB HPP in utero.


Assuntos
Fosfatase Alcalina/genética , Testes Genéticos , Hipofosfatasia/diagnóstico , Diagnóstico Pré-Natal , Alelos , Feminino , Feto/patologia , Estudos de Associação Genética , Humanos , Hipofosfatasia/diagnóstico por imagem , Hipofosfatasia/genética , Hipofosfatasia/patologia , Masculino , Mutação/genética , Gravidez
12.
Int J Mol Sci ; 22(2)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477631

RESUMO

This review summarizes important information on the ectoenzyme tissue-nonspecific alkaline phosphatase (TNAP) and gives a brief insight into the symptoms, diagnostics, and treatment of the rare disease Hypophosphatasia (HPP), which is resulting from mutations in the TNAP encoding ALPL gene. We emphasize the role of TNAP beyond its well-known contribution to mineralization processes. Therefore, above all, the impact of the enzyme on central molecular processes in the nervous system and on inflammation is presented here.


Assuntos
Fosfatase Alcalina/genética , Hipofosfatasia/genética , Doenças Raras/genética , Animais , Calcificação Fisiológica/genética , Modelos Animais de Doenças , Humanos , Hipofosfatasia/patologia , Camundongos , Mutação , Doenças Raras/patologia
13.
Calcif Tissue Int ; 108(3): 288-301, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33191482

RESUMO

Hypophosphatasia (HPP) is a rare inborn error of metabolism due to a decreased activity of tissue nonspecific alkaline phosphatase (TNSALP). As the onset and severity of HPP are heterogenous, it can be challenging to determine the pathogenicity of detected rare ALPL variants in symptomatic patients. We aimed to characterize patients with rare ALPL variants to propose which patients can be diagnosed with adult HPP. We included 72 patients with (1) clinical symptoms of adult HPP or positive family history and (2) low TNSALP activity and/or high pyridoxal 5'-phosphate (PLP) levels, who underwent ALPL gene sequencing. The patients were analyzed and divided into three groups depending on ALPL variant pathogenicity according to the classification of the American College of Medical Genetics and Genomics (ACMG). Reported pathogenic (n = 34 patients), rare (n = 17) and common (n = 21) ALPL variants only were found. Muscular complaints were the most frequent symptoms (> 80%), followed by bone affection (> 50%). Tooth involvement was significantly more common in patients with pathogenic or rare ALPL variants. Seven rare variants could be classified as likely pathogenic (ACMG class 4) of which five have not yet been described. Inconclusive genetic findings and less specific symptoms make diagnosis difficult in cases where adult HPP is not obvious. As not every pathogenic or rare ALPL variant leads to a manifestation of HPP, only patients with bone complications and at least one additional complication concerning teeth, muscle, central nervous and mental system, repeated low TNSALP activity and high PLP levels should be diagnosed as adult HPP if rare ALPL gene variants of ACMG class 4 or higher support the diagnosis.


Assuntos
Fosfatase Alcalina , Hipofosfatasia , Adulto , Idoso , Fosfatase Alcalina/genética , Osso e Ossos/patologia , Feminino , Estudos de Associação Genética , Humanos , Hipofosfatasia/genética , Hipofosfatasia/patologia , Masculino , Pessoa de Meia-Idade , Músculos/fisiologia , Mutação
14.
Biomolecules ; 10(12)2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302551

RESUMO

Tissue-nonspecific alkaline phosphatase (TNAP) is a ubiquitously expressed enzyme that is best known for its role during mineralization processes in bones and skeleton. The enzyme metabolizes phosphate compounds like inorganic pyrophosphate and pyridoxal-5'-phosphate to provide, among others, inorganic phosphate for the mineralization and transportable vitamin B6 molecules. Patients with inherited loss of function mutations in the ALPL gene and consequently altered TNAP activity are suffering from the rare metabolic disease hypophosphatasia (HPP). This systemic disease is mainly characterized by impaired bone and dental mineralization but may also be accompanied by neurological symptoms, like anxiety disorders, seizures, and depression. HPP characteristically affects all ages and shows a wide range of clinical symptoms and disease severity, which results in the classification into different clinical subtypes. This review describes the molecular function of TNAP during the mineralization of bones and teeth, further discusses the current knowledge on the enzyme's role in the nervous system and in sensory perception. An additional focus is set on the molecular role of TNAP in health and on functional observations reported in common laboratory vertebrate disease models, like rodents and zebrafish.


Assuntos
Fosfatase Alcalina/genética , Ansiedade/genética , Osso e Ossos/enzimologia , Depressão/genética , Hipofosfatasia/genética , Convulsões/genética , Dente/enzimologia , Fosfatase Alcalina/deficiência , Animais , Ansiedade/enzimologia , Ansiedade/patologia , Osso e Ossos/patologia , Calcificação Fisiológica/genética , Depressão/enzimologia , Depressão/patologia , Difosfatos/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Humanos , Hipofosfatasia/enzimologia , Hipofosfatasia/patologia , Mutação , Convulsões/enzimologia , Convulsões/patologia , Índice de Gravidade de Doença , Dente/crescimento & desenvolvimento , Vitamina B 6/metabolismo
15.
Sci Rep ; 10(1): 13321, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32770041

RESUMO

Hypophosphatasia (HPP) is a rare genetic disease with diverse symptoms and a heterogeneous severity of onset with underlying mutations in the ALPL gene encoding the ectoenzyme Tissue-nonspecific alkaline phosphatase (TNAP). Considering the establishment of zebrafish (Danio rerio) as a new model organism for HPP, the aim of the study was the spatial and temporal analysis of alpl expression in embryos and adult brains. Additionally, we determined functional consequences of Tnap inhibition on neural and skeletal development in zebrafish. We show that expression of alpl is present during embryonic stages and in adult neuronal tissues. Analyses of enzyme function reveal zones of pronounced Tnap-activity within the telencephalon and the mesencephalon. Treatment of zebrafish embryos with chemical Tnap inhibitors followed by axonal and cartilage/mineralized tissue staining imply functional consequences of Tnap deficiency on neuronal and skeletal development. Based on the results from neuronal and skeletal tissue analyses, which demonstrate an evolutionary conserved role of this enzyme, we consider zebrafish as a promising species for modeling HPP in order to discover new potential therapy strategies in the long-term.


Assuntos
Fosfatase Alcalina/biossíntese , Regulação Enzimológica da Expressão Gênica , Hipofosfatasia/metabolismo , Desenvolvimento Musculoesquelético , Neurogênese , Proteínas de Peixe-Zebra/biossíntese , Peixe-Zebra/metabolismo , Fosfatase Alcalina/genética , Animais , Modelos Animais de Doenças , Hipofosfatasia/genética , Hipofosfatasia/patologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
16.
Gene ; 754: 144855, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32522695

RESUMO

Alkaline phosphatase (ALP) is highly expressed in the cells of mineralized tissue and plays a critical function in the formation of hard tissue. The existing status of this critical enzyme should be reviewed periodically. ALP increases inorganic phosphate local rates and facilitates mineralization as well as reduces the extracellular pyrophosphate concentration, an inhibitor of mineral formation. Mineralization is the production, inside matrix vesicles, of hydroxyapatite crystals that bud from the outermembrane of hypertrophic osteoblasts and chondrocytes. The expansion of hydroxyapatite formsinto the extracellular matrix and its accumulation between collagen fibrils is observed. Among various isoforms, the tissue-nonspecific isozyme of ALP (TNAP) is strongly expressed in bone, liver and kidney and plays a key function in the calcification of bones. TNAP hydrolyzes pyrophosphate and supplies inorganic phosphate to enhance mineralization. The biochemical substrates of TNAP are believed to be inorganic pyrophosphate and pyridoxal phosphate. These substrates concentrate in TNAP deficient condition which results in hypophosphatasia. The increased level of ALP expression and development in this environment would undoubtedly provide new and essential information about the fundamental molecular mechanisms of bone formation, offer therapeutic possibilities for the management of bone-related diseases.


Assuntos
Fosfatase Alcalina/química , Fosfatase Alcalina/metabolismo , Calcificação Fisiológica , Hipofosfatasia/patologia , Fosfatase Alcalina/deficiência , Animais , Humanos , Hipofosfatasia/enzimologia , Isoenzimas
17.
Front Endocrinol (Lausanne) ; 11: 590455, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391183

RESUMO

Background: Hypophosphatasia is a rare bone disease characterized by impaired bone mineralization and low alkaline phosphatase activity. Here, we describe the course of bone-targeted enzyme replacement therapy with asfotase alpha for a female infant patient with hypophosphatasia who lacked apparent severe clinical symptoms. Case presentation: The patient exhibited low serum alkaline phosphatase (60 U/L; age-matched reference range, 520-1,580) in a routine laboratory test at birth. Further examinations revealed skeletal demineralization and rachitic changes, as well as elevated levels of serum calcium (2.80 mmol/L; reference range, 2.25-2.75 mmol/L) and ionic phosphate (3.17 mmol/L; reference range, 1.62-2.48 mmol/L), which are typical features in patients with hypophosphatasia. Sequencing analysis of the tissue-nonspecific alkaline phosphatase (TNSALP) gene identified two pathogenic mutations: c.406C>T, p.Arg136Cys and c.979T>C, p.Phe327Leu. Thus, the patient was diagnosed with hypophosphatasia. At the age of 37 days, she began enzyme replacement therapy using asfotase alpha at the standard dose of 6 mg/kg/week. Initial therapy from the age of 37 days to the age of 58 days substantially improved rickets signs in the patient; it also provided immediate normalization of serum calcium and ionic phosphate levels. However, serum ionic phosphate returned to a high level (2.72 mmol/L), which was presumed to be a side effect of asfotase alpha. Thus, the patient's asfotase alfa treatment was reduced to 2 mg/kg/week, which allowed her to maintain normal or near normal skeletal features thereafter, along with lowered serum ionic phosphate levels. Because the patient exhibited slight distal metaphyseal demineralization in the knee at the age of 2 years and 6 months, her asfotase alfa treatment was increased to 2.4 mg/kg/week. No signs of deterioration in bone mineralization were observed thereafter. At the age of 3 years, the patient's motor and psychological development both appeared normal, compared with children of similar age. Conclusion: This is the first report in which reduced doses of asfotase alfa were administered to an infant patient with hypophosphatasia who lacked apparent severe clinical symptoms. The results demonstrate the potential feasibility of a tailored therapeutic option based on clinical severity in patients with hypophosphatasia.


Assuntos
Fosfatase Alcalina/administração & dosagem , Terapia de Reposição de Enzimas/métodos , Hipofosfatasia/terapia , Imunoglobulina G/administração & dosagem , Proteínas Recombinantes de Fusão/administração & dosagem , Índice de Gravidade de Doença , Feminino , Humanos , Hipofosfatasia/enzimologia , Hipofosfatasia/patologia , Lactente , Prognóstico
18.
PLoS One ; 14(10): e0222931, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31600233

RESUMO

Hypophosphatasia (HPP) is a rare and intractable metabolic bone disease caused by mutations in the ALPL gene. Here, we undertook a nationwide survey of HPP in Japan, specifically regarding the prominent genetic and dental manifestations of odonto (n = 16 cases) and other (termed "non-odonto") (n = 36 cases) types. Mean serum alkaline phosphatase (ALP) values in odonto-type patients were significantly greater than those of non-odonto-type patients (P<0.05). Autosomal dominant and autosomal recessive inheritance patterns were detected, respectively, in 89% of odonto-type and 96% of non-odonto-type patients. The ALPL "c.1559delT" mutation, associated with extremely low ALP activity, was found in approximately 70% of cases. Regarding dental manifestations, all patients classified as odonto-type showed early exfoliation of the primary teeth significantly more frequently than patients classified as non-odonto-type (100% vs. 56%; P<0.05). Tooth hypomineralisation was detected in 42% of non-odonto-type patients, but not in any odonto-type patients (0%; P<0.05). Collectively, these results suggest that genetic and dental manifestations of patients with odonto-type and non-odonto-type HPP are significantly different, and these differences should be considered during clinical treatment of patients with HPP.


Assuntos
Fosfatase Alcalina/genética , Hipofosfatasia/genética , Desmineralização do Dente/genética , Adulto , Fosfatase Alcalina/sangue , Feminino , Humanos , Hipofosfatasia/sangue , Hipofosfatasia/epidemiologia , Hipofosfatasia/patologia , Japão/epidemiologia , Masculino , Mutação/genética , Inquéritos e Questionários , Desmineralização do Dente/sangue , Desmineralização do Dente/epidemiologia , Desmineralização do Dente/patologia
19.
Orphanet J Rare Dis ; 14(1): 201, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31419999

RESUMO

BACKGROUND: Hypophosphatasia (HPP) is a rare, inherited, metabolic bone disease caused by deficient tissue-non-specific isoenzyme of alkaline phosphatase activity that manifests as a broad range of signs/symptoms, including bone mineralization defects and systemic complications. The burden of disease is poorly characterized, particularly in children. This study aimed to characterize the patient-reported burden of disease among children with HPP using two survey instruments: the HPP Impact Patient Survey (HIPS) and the HPP Outcomes Study Telephone interview (HOST). METHODS: Between September 2009 and June 2011, pediatric patients (aged younger than 18 years) with HPP were recruited to participate in the study via patient advocacy groups or their medical provider. Survey questions were used to capture information on patient demographics, HPP-related medical history, mobility, and health-related quality of life (HRQoL; using the 10-item Short-Form Health Survey for Children [SF-10], HIPS only). RESULTS: Common clinical features of the 59 pediatric survey respondents (mean [standard deviation] age: 7.6 [5.1] years; 51% male) included pain (86% of patients), muscle weakness (71%), difficulty gaining weight (64%), and delayed walking (59%). Fracture was reported by 36% of patients; multiple fractures were also reported (15% of patients). Use of assistive devices for mobility was frequent among the study population (51%). In response to the SF-10, patients reported a substantial impact of HPP on their HRQoL; physical function was the most severely impaired component relative to normative data. Of patients responding to the HOST, two-thirds experienced worsening of at least one of their HPP-related signs/symptoms over a 5-year period. CONCLUSIONS: In pediatric patients, HPP is associated with a high burden of disease and a substantial negative impact on HRQoL. The burden of HPP may increase and HRQoL reduce further over time as signs/symptoms that affect HRQoL worsen or new signs/symptoms manifest.


Assuntos
Efeitos Psicossociais da Doença , Hipofosfatasia/patologia , Adolescente , Criança , Pré-Escolar , Estudos Transversais , Feminino , Fraturas Ósseas/patologia , Fraturas Ósseas/fisiopatologia , Humanos , Hipofosfatasia/fisiopatologia , Lactente , Recém-Nascido , Masculino , Debilidade Muscular/patologia , Debilidade Muscular/fisiopatologia , Dor/patologia , Dor/fisiopatologia , Qualidade de Vida , Inquéritos e Questionários , Telefone
20.
Bone ; 125: 128-139, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31077853

RESUMO

Hypophosphatasia (HPP) is an inherited metabolic disorder that causes defective skeletal and dental mineralization. HPP exhibits a markedly heterogeneous range of clinical manifestations caused by dysfunction of the tissue-nonspecific isozyme of alkaline phosphatase (TNSALP), resulting from loss-of-function mutations in the ALPL gene. HPP has been associated with predominantly missense mutations in ALPL, and a number of compound heterozygous genotypes have been identified. Here, we describe a case of a subject with adult-onset HPP caused by a novel combination of missense mutations p.Gly473Ser and p.Ala487Val, resulting in chronic musculoskeletal pain, myopathy, persistent fatigue, vomiting, and an uncommon dental phenotype of short-rooted permanent teeth. Pedigree and biochemical analysis indicated that severity of symptoms was correlated with levels of residual ALP activity, and co-segregated with the p.Gly473Ser missense mutation. Bioinformatic analysis to predict the structural and functional impact of each of the point mutations in the TNSALP molecule, and its potential contribution to the clinical symptoms, revealed that the affected Gly473 residue is localized in the homodimer interface and predicted to have a dominant negative effect. The affected Ala487 residue was predicted to bind to Tyr479, which is closely located the N-terminal α-helix of TNSALP monomer 2, suggesting that both changes may impair dimer stability and catalytic functions. In conclusion, these findings assist in defining genotype-phenotype associations for HPP, and further define specific sites within the TNSALP molecule potentially related to neuromuscular manifestations in adult HPP, allowing for a better understanding of HPP pathophysiology.


Assuntos
Hipofosfatasia/genética , Hipofosfatasia/patologia , Mutação/genética , Adulto , Fosfatase Alcalina/genética , Sequência de Aminoácidos , Biologia Computacional , Feminino , Estudos de Associação Genética , Humanos , Masculino , Dados de Sequência Molecular , Linhagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...